In all the discussion on MT that we hear, we do not often hear much about the post-editors and what could be done to enhance and improve the often negatively viewed PEMT task. Lucía Guerrero provides useful insights on her direct experience in improving the work experience for post-editors. Interestingly over the years I have noted that, strategies to improve the post-editor experience can often make mediocre MT engines viable, and failure to do so can make good engines fail in fulfilling the business promise. I cannot really say much beyond what Lucía says here other than restate what she is saying in slightly different words. The keys to success seem to be:
Post-editing has become the most common practice when using MT. According to Common Sense Advisory (2016), more than 80% of LSPs offer Machine Translation Post-Editing (MTPE) services, and one of the main conclusions from a study presented by Memsource at the 2017 Conference of the European Association for Machine Translation (EAMT) states that less than 10% of the MT done in Memsource Cloud was left unedited. While it is true that a lot of user-generated content is machine-translated without post-editing (we see it every day at eBay, Amazon, Airbnb, to mention just a few), whether it is RBMT, SMT, or NMT, post-editors are still needed to improve the raw MT output.
While these data show that they are key, linguists are often excluded from the MT process, and only required to participate in the post-editing task, with no interaction “in process.” Human evaluation is still seen as “expensive, time consuming and prone to subjectivity.” Error annotation takes a lot of time, compared to automated metrics such as BLEU or WER, which are certainly cheaper and faster. These tools provide quantitative data usually obtained by automatically comparing the raw MT to a reference translation, but the post-editor’s evaluation is hardly ever taken into account. Shouldn’t that be important if the post-editor’s role is here to stay?
While machines are better than we are at spotting differences, humans are better at assessing linguistic phenomena, categorizing them and giving detailed analysis.
Our approach at CPSL is to involve post-editors in three stages of the MT process:
For our evaluation purposes, we find it more useful to ask the post-editor to fill in a form with their feedback, correlating information such as source segment, raw MT and post-edited segment, type and severity of errors encountered, and personal comments.
One of the main issues I often have to face when I manage an MT-based project is the reluctance of some translators to work with machine-translated files due to bad previous post-editing experiences. I have heard many stories about post-editors being paid based on an edit distance that was calculated from a test that was not even close to reality, or post-editors never being asked for their evaluation of the raw MT output. They were only asked for the post-edited files, and sometimes, the time spent, but just for billing purposes. One of our usual translators even told me that he received machine-translated files that were worse than Google Translates results (NMT had not yet been implemented). All these stories have in common the fact that post-editors are seldom involved in the system improvement and evaluation process. This can turn post-editing into an alienating job that nobody wants to do a second time.
To avoid such situations, we decided to create our own feedback form for assessing and categorizing error severity and prioritizing the errors. For example, errors such as incorrect capitalization of months and days in Spanish, word order problems in questions in English, punctuation issues in French, and other similar errors were given the highest priority by our post-editors and our MT provider was asked to fix them immediately. The complexity of the evaluation document can vary according to need. It can be as detailed as the Dynamic Quality Framework (DQF) template or be a simple list of the main errors with an example.
However, more than asking for severity and repetitiveness, what I really want to know is what I call ‘annoyance level,’ i.e. what made the post-editing job too boring, tedious or time-consuming – in short, a task that could lead the post-editor to decline a similar job in the future. These are variables that quantitative metrics cannot provide. Automated metrics cannot provide any insight on how to prioritize error fixing, either by error severity level or by ‘annoyance level.’ Important errors can go unnoticed in a long list of issues, and thus never be fixed.
I have managed several MT-based projects where the edit distance was acceptable (< 30%) and the post-editors’ overall experience, to my surprise was still unpleasant. In such cases, the post-editor came back to me saying that certain types of errors were so unacceptable for them that they didn’t want to post-edit again. Sometimes this opinion was related to severity and other times to perception, i.e. errors a human would never make. In these cases, the feedback form helped detect the errors and turned a previously bad experience into an acceptable job.
It is worth noting that one cannot rely on one single post- editor's feedback. The acceptance threshold can vary quite a lot from one person to another, and post-editing skills are also different. Thus, the most reasonable approach is to collect feedback from several post-editors, compare their comments and use them as a complement to the automatic metrics.
We must definitely make an effort to include the post-editors’ comments as a variable when evaluating MT quality, to prioritize certain errors when optimizing the engines. If we have a team of translators whom we trust, then we should also trust them when they comment on the raw MT results. Personally, I always try my best to send machine-translated files that are in good shape so that the post-editing experience is acceptable. In this way, I can keep my preferred translators (recycled as post-editors) happy and on board, willing to accept more jobs in the future. This can make a significant difference not only in their experience but also in the quality of the final project.
According to several studies on NMT, it seems that the errors produced by these systems are harder to detect than those produced by RBMT and SMT, because they occur at the semantic level (i.e. meaning). NMT takes context into account and the resulting text flows naturally; we no longer see the syntactically awkward sentences we are used to with SMT. But the usual errors are mistranslations, and mistranslations can only be detected by post-editors, i.e. by people. In most NMT tests done so far, BLEU scores were low, while human evaluators considered that the raw MT output was acceptable, which means that with NMT we cannot trust BLEU alone. Both source and target text have to be read and assessed in order to decide if the raw MT is acceptable or not; human evaluators have to be involved. With NMT, human assessment is clearly even more important, so while the translation industry works on a valid approach for evaluating NMT, it seems that qualitative information will be required to properly assess the results of such systems.
Lucía Guerrero is a senior Translation and Localization Project Manager at CPSL, in the translation industry since 1998. In the past, she has managed localization projects for Apple Computer and translated children’s and art books. At CPSL she is specialized in international and national institutions, machine translation and post-editing.
CPSL is among a select number of language service suppliers that are triple quality certified, including ISO 9001, ISO 17100 and ISO 13485 for medical devices. Based in Barcelona (Spain) and with production centers in Madrid, Ludwigsburg (Germany) Boston (USA) and a sales office in the United Kingdom,the company offers language integrated solutions on both sides of the Atlantic Ocean, 24/7, 365 days a year.
CPSL has been the driving force behind the new ISO 18587 (2017) standard, which sets out requirements for the process of post-editing machine translation (MT) output. Livia Florensa, CEO at CPSL, is the architect of the standard, which has just been published. As Project Leader for this mission, she played a key role, being responsible for the proposal and for drafting and coordinating the development of the standard. ISO 18587 (2017) regulates the post-editing of content processed by machine translation systems, and also establishes the competences and qualifications that post-editors must have. The standard is intended for use by post-editors, translation service providers and their clients.
Find out more at: www.cpsl.com.
The following is Storify Twitter coverage by Lucia from the EAMT conference earlier this year.
- Build Trust by establishing transparent and fair compensation and forthright work related communication
- Develop ways to involve post-editors in the MT engine refinement and improvement process involvement
- Demonstrate that the Feedback Cycle does in fact improve the work experience on an ongoing basis
============
Post-editing has become the most common practice when using MT. According to Common Sense Advisory (2016), more than 80% of LSPs offer Machine Translation Post-Editing (MTPE) services, and one of the main conclusions from a study presented by Memsource at the 2017 Conference of the European Association for Machine Translation (EAMT) states that less than 10% of the MT done in Memsource Cloud was left unedited. While it is true that a lot of user-generated content is machine-translated without post-editing (we see it every day at eBay, Amazon, Airbnb, to mention just a few), whether it is RBMT, SMT, or NMT, post-editors are still needed to improve the raw MT output.
Quantitative Evaluation Methods: Only Half the Picture
While these data show that they are key, linguists are often excluded from the MT process, and only required to participate in the post-editing task, with no interaction “in process.” Human evaluation is still seen as “expensive, time consuming and prone to subjectivity.” Error annotation takes a lot of time, compared to automated metrics such as BLEU or WER, which are certainly cheaper and faster. These tools provide quantitative data usually obtained by automatically comparing the raw MT to a reference translation, but the post-editor’s evaluation is hardly ever taken into account. Shouldn’t that be important if the post-editor’s role is here to stay?
While machines are better than we are at spotting differences, humans are better at assessing linguistic phenomena, categorizing them and giving detailed analysis.
Our approach at CPSL is to involve post-editors in three stages of the MT process:
- For testing an MT engine in a new domain or language combination
- For regular evaluation of an existing MT engine
- For creating/updating post-editing guidelines
For our evaluation purposes, we find it more useful to ask the post-editor to fill in a form with their feedback, correlating information such as source segment, raw MT and post-edited segment, type and severity of errors encountered, and personal comments.
Turning Bad Experiences Into Rewarding Jobs
One of the main issues I often have to face when I manage an MT-based project is the reluctance of some translators to work with machine-translated files due to bad previous post-editing experiences. I have heard many stories about post-editors being paid based on an edit distance that was calculated from a test that was not even close to reality, or post-editors never being asked for their evaluation of the raw MT output. They were only asked for the post-edited files, and sometimes, the time spent, but just for billing purposes. One of our usual translators even told me that he received machine-translated files that were worse than Google Translates results (NMT had not yet been implemented). All these stories have in common the fact that post-editors are seldom involved in the system improvement and evaluation process. This can turn post-editing into an alienating job that nobody wants to do a second time.
To avoid such situations, we decided to create our own feedback form for assessing and categorizing error severity and prioritizing the errors. For example, errors such as incorrect capitalization of months and days in Spanish, word order problems in questions in English, punctuation issues in French, and other similar errors were given the highest priority by our post-editors and our MT provider was asked to fix them immediately. The complexity of the evaluation document can vary according to need. It can be as detailed as the Dynamic Quality Framework (DQF) template or be a simple list of the main errors with an example.
Post Editor Feedback Form |
However, more than asking for severity and repetitiveness, what I really want to know is what I call ‘annoyance level,’ i.e. what made the post-editing job too boring, tedious or time-consuming – in short, a task that could lead the post-editor to decline a similar job in the future. These are variables that quantitative metrics cannot provide. Automated metrics cannot provide any insight on how to prioritize error fixing, either by error severity level or by ‘annoyance level.’ Important errors can go unnoticed in a long list of issues, and thus never be fixed.
I have managed several MT-based projects where the edit distance was acceptable (< 30%) and the post-editors’ overall experience, to my surprise was still unpleasant. In such cases, the post-editor came back to me saying that certain types of errors were so unacceptable for them that they didn’t want to post-edit again. Sometimes this opinion was related to severity and other times to perception, i.e. errors a human would never make. In these cases, the feedback form helped detect the errors and turned a previously bad experience into an acceptable job.
It is worth noting that one cannot rely on one single post- editor's feedback. The acceptance threshold can vary quite a lot from one person to another, and post-editing skills are also different. Thus, the most reasonable approach is to collect feedback from several post-editors, compare their comments and use them as a complement to the automatic metrics.
We must definitely make an effort to include the post-editors’ comments as a variable when evaluating MT quality, to prioritize certain errors when optimizing the engines. If we have a team of translators whom we trust, then we should also trust them when they comment on the raw MT results. Personally, I always try my best to send machine-translated files that are in good shape so that the post-editing experience is acceptable. In this way, I can keep my preferred translators (recycled as post-editors) happy and on board, willing to accept more jobs in the future. This can make a significant difference not only in their experience but also in the quality of the final project.
5 Tips for Successfully Integrating Qualitative Feedback into your MT Evaluation Workflow
- Devise a tool and a workflow for collecting feedback from the post-editors.
- Agree to fair compensation
- Never promise the moon
- Don’t force anyone to become a post-editor
- Listen, listen, listen
And… What About NMT Evaluation?
According to several studies on NMT, it seems that the errors produced by these systems are harder to detect than those produced by RBMT and SMT, because they occur at the semantic level (i.e. meaning). NMT takes context into account and the resulting text flows naturally; we no longer see the syntactically awkward sentences we are used to with SMT. But the usual errors are mistranslations, and mistranslations can only be detected by post-editors, i.e. by people. In most NMT tests done so far, BLEU scores were low, while human evaluators considered that the raw MT output was acceptable, which means that with NMT we cannot trust BLEU alone. Both source and target text have to be read and assessed in order to decide if the raw MT is acceptable or not; human evaluators have to be involved. With NMT, human assessment is clearly even more important, so while the translation industry works on a valid approach for evaluating NMT, it seems that qualitative information will be required to properly assess the results of such systems.
--------------------
Lucía Guerrero is a senior Translation and Localization Project Manager at CPSL, in the translation industry since 1998. In the past, she has managed localization projects for Apple Computer and translated children’s and art books. At CPSL she is specialized in international and national institutions, machine translation and post-editing.
About CPSL: ------------------------------------------------------------------
CPSL (Celer Pawlowsky S.L.) is one of the longest-established language services providers in the translation and localization industry, having served clients for over 50 years in a range of industries including: life sciences, energy, machinery and tools, automotive and transport, software, telecommunications, financial, legal, electronics, education and government. The company offers a full suite of language services – translation and localization, interpreting and multimedia related services such as voice-over, transcription and subtitling.CPSL is among a select number of language service suppliers that are triple quality certified, including ISO 9001, ISO 17100 and ISO 13485 for medical devices. Based in Barcelona (Spain) and with production centers in Madrid, Ludwigsburg (Germany) Boston (USA) and a sales office in the United Kingdom,the company offers language integrated solutions on both sides of the Atlantic Ocean, 24/7, 365 days a year.
CPSL has been the driving force behind the new ISO 18587 (2017) standard, which sets out requirements for the process of post-editing machine translation (MT) output. Livia Florensa, CEO at CPSL, is the architect of the standard, which has just been published. As Project Leader for this mission, she played a key role, being responsible for the proposal and for drafting and coordinating the development of the standard. ISO 18587 (2017) regulates the post-editing of content processed by machine translation systems, and also establishes the competences and qualifications that post-editors must have. The standard is intended for use by post-editors, translation service providers and their clients.
Find out more at: www.cpsl.com.
The following is Storify Twitter coverage by Lucia from the EAMT conference earlier this year.
0 Comment